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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and its induced norm || - ||. In
this paper, we present a computational iterative method to the variational inequality problem
which was first introduced in [1]. Given C is a nonempty closed convex subset of H and a
mapping F : H — H, the variational inequality problem is to find a point x* € C such that

(F(x*),z—x") >0 forall ze C. (1.1)

A well-known projection-type method for solving the variational inequality problems (1.1) is
the extragradient method which is proposed by Korpelevich [2] in the Euclidean space. After
that, it was considered in the Hilbert space by Censor et al. [3]. The extragradient method
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requires two projection onto the set C and two calculations of the operator F per iteration as
follows:

X1 € H,
yi = Pc(xk — AF(x)), (1.2)
X1 = Pc(xk — AF(y«)).

It was proved that, if the the solution set of the variational inequality (1.1) is nonempty
and the operator F is monotone and L-Lipschitz continuous, then the sequence generated
by the extragradient method (1.2) converges weakly to an element in the solution set of the
variational inequality (1.1). The extragradient method has received great concentration by
many authors, for instance [4-8] and references there in. Note that if the constrained set C is
a general closed convex set, then one need to solve a hidden sub-problem in order to obtain
the next iteration. This situation may affect the efficiency of the extragradient method. To
keep away from this situation, Censor et al. [3] modified the extragradient method by replacing
the second projection onto the closed and convex subset C with the one onto the subgradient
half-space for updating the next iteration. This method is called subgradient-extragradient
method as follows:

x1 € H,

Yk = P(_‘(Xk — )\F(Xk)),

T :={w e H: {(xk — \F(xx)) — yx. w — yx) < 0},
X1 = Pr,(xk — AF(yk)).

Censor et al. [3] showed the weak convergence result of the proposed subgradient extragradient
method under some appropriate condition. This method has been studied by many authors,
see for instance [9-14]. In particular, Kraikaew and Saejung [10] presented the Halpern's type
subgradient extragradient method for solving the variational inequality problem (1.1) by using
the ideas of the classical Halpern's method [15] for the fixed-point problem and subgradient
extragradient method (1.3). Their method is read as follow:

(13)

x; € H,

Yk = Pc(xx — AF(xx)),

T ={weH: {(xk — AF(x)) — yx, w — yx) < 0},
Xk+1 = Bixa + (1 = B) P, (xk — AF (k).

where {3¢}2; C (0, 1) satisfied Y2, Bk = co and klim Bk = 0. They showed the strong
—00

(1.4)

convergence result of the presented method where the operator F is monotone and L-Lipschitz
continuous.

On the other hand, the fixed-point problem is the problem of finding a point x* € Fix T :=
{x € H:x=Tx}+#0, where T : H — H is a nonlinear operator. The classical method to
solve the fixed-point problem is the Picard’s iteration. This method is updated by

Xk+1 = TXk.

After that, Mann [16] presented a modification of Picard's iteration so-called Mann's mean
value iteration. The idea of this method is to use the mean of previous history iteration to
update next iteration as follows:

Xkt1 = TXk,
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where X, = Zjl.;l ajxj, with a; > 0,vj = 1,--- , k and Z};l a; = 1. Notice that, under
some appropriate condition, the Mann's mean value iteration converges weakly to a point
in Fix T whereas the classical Picard's iteration may fail to converge in general, see [17] for
more discussion. Further works of the Mann's mean value iteration were carried out in, for

instance, [17,18].

Motivated the result of [10] and the ideas of the Mann’s mean value iteration, we present
the Halpern's mean subgradient extragradient method for solving the variational inequality
problem (1.1). We prove the strong convergence result of the proposed method in case of the
operator F is monotone and L-Lipschitz continuous.

2. Preliminaries
In this section, we collect some basic definitions, properties, and useful tools in our work.
For more details, the reader may consult the reference books [19, 20].

We denote by Id the identity operator on a real Hilbert space H. We denote the strong
convergence and weak convergence of a sequence {x,}7°; to x € H by xx — x and xx — X,
respectively.

We first recall some definitions and properties of the metric projection and half-space that
will be referred to in our analysis.

Definition 2.1. [19, Definition 1.2.1] Let C be a nonempty subset of 7 and x € H. If there
exists a point y € C such that

ly =xF <llz=x], vzeC,

then y is called a metric projection of x onto C and is denoted by Pc(x). If Pc(x) exists
and is uniquely determined for all x € H, then the operator P¢c : H — C is called the metric
projection onto C.

It is well-known that if C is a nonempty closed and convex subset of H, then for any
x € H there exists a metric projection Pc(x) and it is uniquely determined. We also note
that the metric projection P¢ is a nonexpansive mapping, that is, for all x,y € H,

1Pc(x) = Pc)Il < [Ix = yII-

The theorem below gives a characterization of the metric projection.

Theorem 2.2. [19, Theorem 1.2.4] Let x € H, C be a closed convex subset of H and y € C.
The following conditions are equivalent:

(i) ¥ = Pc(x)
(i) (x—y.z—y) <0.
Proof. See [19, Theorem 1.2.4]. |

The hyperplane in a Hilbert space H is definded as the subset

H(a;v) :={xeH: (ax)=n1}
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where a € H \ {0} and v € R and the subset
H<(a;v) ={x e H:(a x) <~}

is called a half-space in . Notice that the hyperplane and half-space are closed and convex
subsets in a Hilbert space H. For other properties of the metric projection, hyperplane and
half-space, we refer the reference books [19, 20].

An infinite lower triangular row matrix [ ;]3%_; is called averaging [21] if the following
statements hold:

(1) aj >0, forallk,j>1,
(1) ax; =0, forallk>1andj>k,

k
() > ak;=1, forall k>1,
j=1
(IV) lim o;=0, forallj>1.

k—+4o00

Next, we recall the notion of H-concentrating which play an important role in our conver-
gence analysis.

Definition 2.3. [17, Definition 2.1] An averaging matrix [ ;]35_; is concentrating if every
nonnegative real sequence {xx}¢2; such that

Xer1 <Xk + 7 Vk €N, (2.1)

o0
where {7x}22; is nonnegative real sequence with E Tk < 00, converges.
k=1

Definition 2.4. [22, Definition 2.3] An averaging matrix [a j|3_; is concentrating in the
sense of Halpern, (in short, H-concentrating) if whenever {¢)}72, {n«}22; are sequences

o0
of nonnegative real numbers such that an < 00, {Bk}32; is a sequence in [0,1] with
k=1

oo
Zﬁk =00, {t}32; is a sequence of real numbers with limsup t, <0, and
k=1 k— o0

k
P = Z Qk jPj
j=1

o1 < (1= B)Px + Btk + mk

for all k € N, it follows that lim ¢, = 0.
k—o00

For some interesting examples of H-concentrating matrices are discussed in [22].

Lemma 2.5. [17] Let {¢i}72; be a real sequence, r € R, and [ ]35_; be an averaging

matrix. If ¢, — r, then @, := Zjlle Qpjpj = r.
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We end this section by recall an important technical lemma which play a key tool in our
convergence result.

Lemma 2.6. [23] Let {a,}5°; be a sequence of real numbers such that there exists a subse-
quence {a, }72; of {a,}2; with a,, < a,,, for all j € N. Then there exists a nondecreasing
sequence {m;}7°; of N such that I|m m; = oo and the following properties are satisfied by

all (sufficiently large) number / € N
my < am+1 and an < am+1

In fact, my is the largest number n in the set {1,---,/} such that a, < a,, 11 holds.

3. A Mean Subgradient Extragradient Method

In this section, we present a Halpern's mean subgradient extragradient method (in short,
Halpern-MSEM) for solving the considered variational inequality problem (1.1).

Algorithm 1: Halpern-MSEM

Initialization: Select a starting point x; € H, a parameter 7 > 0, a sequence
{Bk}iz, € [0,b] C[0,1), and an averaging matrix [cv, 35—
Stepl: Given a current iterate x, € H, compute the mean iterate

k
Xk 1= E Qg jXj-
j=1

Compute
Yk = Pc(yk — TF(?;()),
Step2: Construct the half-space Ty
Ty ={weH: Xx—17F(Xk) — Yk, w — yx) < 0},
and calculate the next iterate
X1 := Brxt + (1 — Bi) Pr(Xk — 7F(y«))-

Update k = k+ 1 and go to Stepl .

Remark 3.1. If the parameter 5 = 0 for all k € N, then the sequence generated by Halpern-
MSEM is the sequence of Mann-MSEM proposed by [24].

Throughout this paper, we assume the following conditions hold.
Assumption 3.1. Assume that
(i) The solution set of the variational inequality (1.1) is nonempty and denoted by VIP(F, C).
(i) The operator F : H — H is monotone, that is,

(x—y, F(x)=F(y)) >0 forall x,yeH. (3.1)
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(i) The operator F : H — H is L-Lipschitz continuous, that is,

|F(x)— F(y)|| < L|x —y| forall x,y¢€H. (3.2)

The following lemma states the important relation of the generated iterates.

Lemma 3.2, Let {xk}?2; and {yx}?2; be the sequence generated by Halpern-MSEM. For
k > 1 and u € VIP(F, C), it holds

s —ull> < (1= B)?Ixk — ull® = (1= Be)*(1 = 7L)[Ixk — yxll?
—(1 =B )*(1 = TL)|Pr. (%6 — TF (y1)) — yil®
+2Bk(x1 — U, X1 — U)

k
(1= B)* Y aglg — ull? = (1 = B)*(1 = 7L)l[xic — vl

j=t

—(1 =B = L) Pr(xk — TF(yk)) — vl
+2Bk(x1 — U, Xp1 — U).

IN

In particular, if 7L < 1, then ||Pr, (X — TF(yk)) — ul| < [|Xk — u]|.
Proof. Let u € VIP(F, C) and denote wy := Pr,(Xx — 7F(yk)). Let us note that

X1 — ull® = [[(1 = B)wi + Brxa — ulf?

( )

(1 = Bi)wi + Bext — u — Bru + Brul|?
(1— Bk)
)

[ Bi)wi + (1 = Bi)u + B(xa — u)|?
(1 = Bi)(wic — u) + Br(xa — u)||?

< (1= B ) lwk — ull® + 2Bi(xa — u, (1 = Bi)(wie — u) + Bi(xa — u))
= (1= Bk)?Iwie — ul® + 2Bk — v, i1 — ). (33)
Now, we consider
1%k — TF(yvi) — ull®> = [IXk — TF(yk) — wic + wi — u

= %k = TF(yi) — il + ||k — ul]?
+2<Yk — TF(yk) — Wy, Wi — U>.
Since u € C C Tk, invoking the variational characterization of the metric projection, we have
(Xk — TF(yk) — Wk, wx — u) > 0, which implies that
Xk = 7F(ya) — ull® > [}k = 7F (v) — wil* + lwie — u]®. (34)
By using the monotonicity of F and the fact that u € VIP(F, C), it follows from (3.4) that
lwi —ull? < [Ixk = 7F (i) — ull® = %k = 7F(yi) — wie||?
Xk = ull® = 2(xk — u, TF(yi)) + [I7F (i) I

—(|1%k — wil> = 2%k — wie, TF (yi)) + ITF (i) I?)
=[x — ull® = [} — wiel> — 2(xk — u, TF (yi)) + 2(Xic — wie, TF (i)
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=[xk — ull® = [}k — wil* + 2(u — wi,, TF (yi))
= % — ull® = 1%k — wiell” + 2(u = yie, TF(yi)) + 2(yic — wie, TF (yi))
=[xk = ull® = [}k — wl? + 2(u = yi, TF (i) — TF(u))
+2(u = yi, TF(u)) + 2{yk — wi, TF(yx))
<Xk = ull® = 1%k — wiell® + 20k — wie, TF (v4)).-

By using the fact that ||xx — wi||? = || Xk — yil|? +2(Xk — Yk, ¥k — wk) + ||k — wi||?, we obtain

[we — ull> < 1%k — ul]® = 1% — yill® = 20Xk = yio yie — wi) — [lyie — wi||?
+2(yi — wie, TF (yk))

% = ull® = 1%k — vl

= Iy — wiell® + 2(xXk — TF(yk) — Yie» Wi — i)
(3.5)

Now, we consider the last term of the inequality (3.5). By using the Cauchy—Schwarz inequality
and the L-Lipschitz continuous of the operator F, we have

(Xk — TF(Xk) — Yk, Wi — k)

H(TF(Xk) = TF(yi), wic — i)

(TF(Xk) — TF(y), Wk — yk)

T|F(Xk) = TF ()l lwie — yell

TL|Xk — yiellllwie =y, (3.6)

(Xk = TF(yk) — Y, Wk — Yk)

INIACIA

where the first inequality using the fact that wy € Ty.
It follows from the inequalities (3.5) and (3.6) that

lwic =l < flxw = will® = 1%k = vl = llyie = wil|® + 27 L%k = yacllllwie = el
=% = ull® = % = yrll® = v = will® + 27 L[x5 = yaclllwic =y
LR = yill* = TLIRe =yl + L wic =yl = L wi = yiel?
= &k =l = (1 = 7L)I%k = yiel®> = (1 = L) lwi = yiel?
=7 L(I%ic = yill = llyse = wael})?
<Rk = ull® = (1= 0%k — il = (1= L) [k =y, (3.7)
where the last inequality using the fact that 7L(|[Xx — y«|| — |lyx — wk||)> > 0.

Finally, combining the inequalities (3.3) and (3.7), we obtain

IN

(1= Bi)?[lwic — ul|® + 2Bk {x1 — u, xuq1 — u)

< (=B (I} — ull® = (1 = 7L) 1%k — yall® = (1 = 7L) ]|k — y«|l?)
+2B8k{x1 — U, X1 — U)

= (1= Bk — ul® = (1= B)*(1 — 7L)[[xk — vl

—(1- 5k)2(1 — 71)[[Wi — yil® + 2Bk {30 — u, Xi1 — u)

2
JXi E:O‘kj

—(1—B«)? (1 - TL)HWk = yill? + 2Bk {x1 — u, xi1 — u)

Ixe 1 — ul|?

= (1-B)? — (1= B (1 = 7L) %k — yul?
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2

= (1-5)° = (1= B*(A = TL)lIxe = yiel?

K
> i — v)
j=1
—(1 = Be)*(1 = 7L)||wk — yil* + 2Bk {x1 — u, k41 — u)

K
(1= B> gl — ul> = (1= B)*(1 = 7L)[[Xi — yie?

j=1
—(1 = Be)*(1 = 7L)||wk — yil[* + 2Bk (1 — u, xks1 — u).

IN

In particular, by using the fact that 7L < 1, we obtain from the inequality (3.7) that
1P7 Rk = TF (i) — ull® < [[%k — ull*.
This completes the proof. |

The following lemma guarantees the boundedness of the constructed sequence {x"}2 ;.

Lemma 3.3. Let {x,}?2, be the sequence generated by Halpern-MSEM and 7 be a positive
real number such that 7L < 1. Then, we have

X1 = ull < Bellxa — wll + (1 = Bi)l[x — ull,
for all u € VIP(F, C). Moreover, {xx}?2, is bounded.

Proof. Let u € VIP(F,C). We denote wy := Pr,(Xx — 7F(yk)), which yields xx41 =
Brx1 + (1 — Bk)wk. We note from Lemma 3.2 that

[wk — ull < [[Xk — ul|.
So, we have

[xks1 —ull = [[Bexa + (1 = Br)wi — u]

1Bk — u) + (1 = Bic)(wk — u)|
Brllxa — ull + (1 — Bi)[[wie — u]|

Bilba — ull + (1 = Bi) Xk — ul|.

IA A

Moreover, we have
[[xk1 = ull < max{|lxy — ul], I} — ul[}.

Next, we use strong induction to prove that for all integer k > 1,
[ — ull < [ba — ull.
Suppose that P(n) is the statement
X1 = ull < [ — .
We verify that P(1) is true that

e —ull < max{|lxa —ul, X1 — ul}
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= [ —ull

So, the claim is true when n = 1.
Now, let n € N and assume that P(/) is true for all integers i such that 1 </ < n.
Now, we consider

n n
%o —ul = 11> anpg— Y anyull
j=1 j=1
n
= 1> ani(x — u)
j=1
n
> anjll —ul
j=1
n
> anlx — ull
j=1

= lba—ull

IN

IN

Therefore,

X1 =l < max{ixa — ull, X — ull}

= [ba—ul.
It follows that for all integer k > 1,
[ = ull < Jxa = ull.
Hence, we conclude that the sequence {xx}%2; is bounded. ]

Now, we are in a position to present our main theorem.

Theorem 3.4. Let the averaging matrix [ay]75_; be H-concentrating, 7 € (0,1/L) and
let {x¢}7°, be a sequence of Halpern-MSEM. Suppose that the sequence {8 }7° ; satisfied
> re i Bk = oo and kIme Bk = 0. Then xi = Pyip(r,c)(x1).

Proof. Put wy = P1,(Xk — 7F(yk)) and u = Pyip(F,c)(x1)-
Since 7 € (0,1/L) and {8k}, C [0, b] C [0, 1) it follows from Lemma 3.2 that

s = ull® < (1= B)?I%k — ull® = (1= B)*(1 = L) |Ixic — yulI?

+2Bi(x1 — U, X1 — U)

k
< (180 el — ul® = (1 = b)*(1 = 7L)|[xic =y

j=1
+Bk(x1 — U, Xk1 — u). (3.8)

This implies that

Ixicer —ul? < (1= Bi)lIxk — ull® + 28k (a0 — uxi1 — ) (3.9)
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Let us consider the following two cases.

Casel: There exists a k; € N such that ||xx;1 — ul|? < |[xx — u|? for all integer k > k.
Then lim |xc — ul|? exists, say r(u).
k— 00
K
. : 2
Thus, we obtain from Lemma 2.5 that kl;rgozlakJij —u||* = r(u).
J:
By using the boundedness of {xx}7°; and klim Bx = 0, we have from the inequality (3.8),
—00

lim ||Yk — ka =0.
k—o00
Now, let {xx, }72; be a sequence of {xx}%2; such that

limsup(xy — u, xkr1 — U) = lim {x3 — u, xx, — u).
k—so00 r—o0

Note that for all r € N,
Xk, — F(Xk,) = Yk Yk, — u) > 0.
Next, by using the Cauchy-Schwarz inequality, we have

(TF(Xk,) Xk, — u) (TF(Xk, ), Xk, — Y&) + (TF (X)), vk, — u)

(TF(Xk,), Xk, — Yi,) + (Xiy — Vi, Vi, — )

—(Xk, — F(Xk.) = Ykr Yk, — 1)

(TF(XK, ), Xk, — Vi) + X, — Yoo Y, — 1)

T F k) MXk = vie |+ 1%k, — Y [l yi, — ull- (3.10)

By using definition of yj, and nonexpansivity of the metric projection, we get

IAIA

e —ull = N[Pc(Xk = TF(Xk)) = ull
< Xk = mF(xk) —
< Xk = ull + T Fi -

Combining this and the inequality (3.10), we obtain

<7—F(Yk,)yyk, — U> < T||F(7k,)
+7[[Xk, — Y&,

+ 11Xk = yk Xk, — ull
. (3.11)

Xk, — Y&,
|F(X,)

Note that the boundedness of {xx}%2; implies the boundedness of {F(Xx,)}22;.
It follows from inequality (3.11) and the fact klim X« — y«|l = O that
—00

limsup(TF(Xx,) Xk, — u) <O0.

r—o0

Now, let {X, }7°; be a subsequence of {Xy, }72; such that

limsup(TF(X, ), Xk, — u) = lim (TF(Xk, ), Xk, — u).
r— o0 =00 ! !

Since {X, }?2; is bounded, there exists a point z € H and a subsequence {X),_}52; of
, i
{Xk, }721 such that X, — z € H. By using monotonicity of F that for all k € N,
i i

T(F(Xk) — F(u), Xk — u) >0,
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we have
<TF(Y;<),Y;( — U> > <TF(U),Y;( — U>.
Note that
1 _
(F(u),z—u) = - plem<TF(“)'Xkr;p —u)
= L im rF). % — 0
T I—00 !
< 1 _Iim <TF(7k,_),Yk,_ — U>
T i—o0 ! !

1
= —limsup(rF (X ), Xk, — u)
T r—oco

0. (3.12)

IN

Since u € VIP(F, C), we conclude that z € VIP(F, C).
Next, we consider

ke,
'p
(x1 — u, Xy, = uy = (3 —u, Z ke, X — u)
j=1
ke, k)
= Pa—u) o x5 ok, ju)
j=1 =1
ke,
'p
= >k, jba—ux - u). (3.13)
j=1

It follows form the inequality (3.13) that

limsup(xy — U, xk41 —u) = lim (x3 — u, xx, — u)
k—o00 r—oo

= lim (a — u, x, — u)

1—00
= lim (x4 —u,x, —u)
p—00 'p
i
= lim E o (X —u,xi—u
p—>00 £ - ’ip'J< J >
J:

lim (x; — u, Xy, —u)
p—00 p

= (xq—uz—u
< 0

where the last inequality using the fact that z € VIP(F, C) and u = Py;p(r c)(x1). From the
inequality (3.9) and using the definition of concentrating matrices in the sense of Halpern's,
we obtain klim I« — u|> = 0. Hence, we can conclude that x, — u.

— 00

Case2: Suppose that there exists a subsequence {xm, }7°; of {xk}?2; such that for all j € N

”ij - UH < ||ij+1 - UH
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From Lemma 2.6, there exists a nondecreasing sequence {k,}7°; of N such that lim k, = oo
p—00

and the following inequalities hold for all p € N :
1%, = ull < lIxi41 — ull - and x5 — wf] < [|x,41 — ul]- (3.14)

From the inequality (3.8), we obtain

Ixe, — ull® < |lxee1 — ul?
< (1= Bi)IXe, — ull> = (1 = B, (1 = 7L) IRk, — i, |I°
+2B4, (x1 — U, Xp, 41 — )
kp
< (1= Bi) Yol — ul? = (1= b)2(1 = 7L)[[Xk, — yi ||
j=1
+Bk(x1 — u, Xk,1 — U). (3.15)

It follows from the inequality (3.9) that
x40 = ull? < (1= Bi)lIxk, — ull® + 2Bk, (31 — u, i1 — u). (3.16)
By using the boundedness of {x}72, and inequality (3.14), we have lim |[x,, — ul| exists,
p—00

say z(u). .

Thus, we obtain from Lemma 2.5 that I|m Zakaij —ul| = z(u).
j=1
By using the boundedness of {x,}?°; again and klim Bx = 0, we have from the inequality
— 00

(3.15) that
pli_)moo ||Ykp - ykp” = 0

Now, let {xk, }7°; be a subsequence of {xk,}52; such that

limsup(x1 — u, xk,1 — u) = lim (a — u, xk, — u).
p—+00 i—o00

Note that for all i € N,
Xk, — F(Xk, ) — Vi, Vi, — 1) < 0.

Next, using definition of y,, and the nonexpansivity of the metric projection, we have
(TF(Xk, ) Xiy, —u) = (TF(Xi,,) Xk, — ¥i,) + (TF(Xi,) ) Yi,, — 1)

(TF(Xky, )s Xk, = Yy, ) + Xk = Yoy s Vi, — U)
_<7k - F(ykp;) = Yk Yip, u>

< (7 (Xk,,,)v Xk G = Vi) T (Xky, = Yoy » Vi — U)

< T Fi )Xk, — Vi, |+ Xk, — i, i, — ull

= 7|Fi ) Xks, = Vi | + [Xks, = Vi, [l Pe (X, — TF (X)) — ul|
< TIFGi) Xk, = Yio, |+ 1%k, = Vi, 11X, = TF (X)) — ul

< TIFi )Xk, — Vi |+ (X, — Vi, 11Xk, — 0]
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71Xk, = i, 1F (i, ) -

Combining this inequality and using the boundedness of {x, }72; and the fact that lim [|x,, —
p—00
Yk,|l = 0, we obtain
lim sup(7F(Xx, ), X, — u) < 0.

i—o00

Now, let {Xy, }72; be a subsequence of {Xy, }72; such that

lim sup(7F (X, ), X, — u) = lim (7F(Xy, ) Xk, — U).

i
i—00 r— o0 r

Since {Xx, }72; is bounded, there exists a point v € H and a subsequence {Xxx, }72; of
{Xk, }e2q suchthatx,, —vecH.

e e
By using the monotonicity of F, for all integer k > 1, we have

T(F(Xx) — F(u),Xx — u) >0

or equivalent
(TF(Xk), Xk — u) > (TF(u), Xx — u).

Thus

(F(u),v—u) = 2 lim (F(u). %k, —u)

1
= = limsup(TF(Xy, ), Xk, — u)

T r—oco
< 0. (3.17)
This implies that v € VIP(F, C).
Next, we consider
p,,t
(x1 — u, Xk"w —uy = (x—u, Zak X u)
p,,t p,,t
= X1 —u, Zak JXJ Zakp/“ ju
Pl,t

= ZO"%, i —u,x; — u). (3.18)

It follows form (3.17) and (3.18) that

limsup(x; — u,x,11 —u) = lim (x3 — U, X, — u)
p—00 i—00
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= lim (q —u,x, —u)
r

r—oo
= tl—l>r2<> (x1 — Uy X, = u)
kpf,t
= lim > ag, ja— x5 - u)
j=1

= tll)rgo(xl — U, Xy, — uy
= (xy—uv—u
< 0

where the last inequality using the fact that v € VIP(F, C) and u = Pypr c)(x1).
From the inequality (3.16) and using the definition of concentrating matrices in the sense of
Halpern's, we obtain lim ||x, — ul|* = 0.

p—00

Finally, using the inequality (3.14), we obtain

i e
Jim = ull < fim_ [0~ ui] = 0.

Hence, we conclude that x, — u.
This completes the proof. |

4. Conclusions

The objective of this work was the solving of a variational inequality problem of a monotone
and Lipschitz continuous operator in Hilbert spaces. We presented an iterative method so-
called a Halpern's mean subgradient extragradient method. Moreover, we proved strong
convergence of the generated sequence of iterates to a solution of the considered problem.
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